

COVER PAGE AND DECLARATION

	Master of Business Administration (M.B.A.)
Specialisation:	MBA HEALTHCARE
Affiliated Center:	CEO BUSINESS SCHOOL
Module Code & Module Title:	MGT550: Managing Operations
Student's Full Name:	FAISAL SALEEM ELTATAR
Student ID:	
Word Count:	3670
Date of Submission:	28/08/2025

I confirm that this assignment is my own work, is not copied from any other person's work (published/unpublished), and has not been previously submitted for assessment elsewhere.

E-SIGNATURE:	Faisal Eltatar
DATE:	28/08/2025

EIU Paris City Campus

Address: 59 Rue Lamarck, 75018 Paris, France | Tel: +33 144 857 317 | Mobile/WhatsApp: +33607591197 | Email: paris@eiu.ac

Operational Industrial Streamline Procedural Guide and Socially Responsible Operational Guide for Big Green Tractor Company

Table of Contents

1.	Executive Summary		2
2.	. Introduction		
	0	Company Overview and Market Position	
	0	Challenges and Environmental Goals	
	0	Financial Performance	
3.	Part O	ne: Operational Industrial Streamline Procedural Guide2-	-6
	0	Cost-Efficient Manufacturing Processes	
	0	Minimizing Defects	
	0	21st Century Tools for Greener Processes	
4. Part 7		wo: Socially Responsible Operational Guide6-	8
	0	Industrial Standards for Chemical Waste Disposal	
	0	Green Alternatives to Traditional Manufacturing	
5.	Proces	ss Map Visualization8-1	10
6.	Conclusion 10-1		-11
7.	References 11-1		12

Executive Summary

Big Green Tractor Company, based in Palembang, Indonesia is facing challenges with growth due to operations and increasing concerns. This report provides an operational framework and socially responsible approach to tackle these issues. Improve cost efficiency, eliminate defects and embrace practices. The operational guide focuses on manufacturing principles like Just-inTime, Kaizen and Six Sigma to minimize waste and enhance processes. Incorporating automation through assembly and IoT technology improves precision and efficiency while energy efficient machinery reduces costs and environmental impact. Quality control methods such as Total Quality Management (TQM) and Six Sigma supported by Pareto charts and root cause analysis ensure the production of defect free products. Moreover Industry 4.0 technologies like AI and robotics combined with renewable energy sources such as wind power align operations, with modern trends in green manufacturing. On the side the socially responsible guide underscores the importance of adhering to ISO 14001 regulations for managing waste and encourages the use of alternatives, like biodegradable materials and practices The use of a process map helps pinpoint bottlenecks enhances overall efficiency and strengthens quality control measures. By implementing these recommendations Big Green Tractors seeks to enhance

operational effectiveness, minimize impact solidify its position in the market and boost financial results. Ultimately aiming to become a frontrunner, in sustainable manufacturing practices.

Introduction

Company Overview and Market Position

Big Green Tractor Company based in Palembang, Indonesia is a manufacturer of tractors catering to sectors in Southeast Asia. Once a dominant force in the region the company is experiencing, stagnant growth because of competition, increased operational costs and inefficiencies in its production processes.

To gain an advantage competitors have embraced technologies like automation and Industry 4.0 solutions along with practices that resonate, with customers who have awareness and adhere to strict regulatory requirements. This challenge has impacted Big Green Tractors market standing prompting the need, for enhancements in operations and environmental practices to restore its competitiveness.

Challenges and Environmental Goals

Big Green Tractor is experiencing declining growth due to ineffective and costly manufacturing methods, as well as byproduct pollutant pollution of the environment. The company is on a path to cost-effective, zero-defect manufacturing and simultaneously addressing environmental impact. Big Green Tractor is currently reducing emissions, stepping up on renewable energy, and enhancing waste management.

Financial Performance

Big Green Tractor Company's financial details aren't disclosed but its slowing growth indicates a decrease in profitability and market presence. The use of methods of manufacture are generating costs that otherwise will subtract to profit margins; not to mention if the company violates regulations, they can incur significant fines, or they could put the company at risk of the customers who have sustainability values or are known to care about sustainability reputations on the brand. The company can eliminate costs by utilizing sustainability, as cost saving methods, such as lean manufacturing or automation and using sustainability methods, such as energy and waste management. Also, the company is in an opportunity to improve operational efficiencies. It is expected that with these changes this will improve performance, rebuild customer trust, rebuild the brand and ultimately move Big Green Tractor towards sustainability and a continuing competitor in the South East Asian market.

Part One: Operational Industrial Streamline Procedural Guide

Cost-Efficient Manufacturing Processes:

To address declining growth, Big Green Tractor can implement **lean manufacturing principles**, **automation**, and **energy-efficient processes** to optimize operations and reduce costs.

Lean Manufacturing Principles:

Lean manufacturing focuses on eliminating waste and improving efficiency. Key principles include:

Just-in-Time (JIT):

JIT helps keep inventory costs low by producing exactly what's needed, at the right time. For Big Green Tractor this means aligning production schedules with demand cutting down on excess tractor parts inventory and decreasing storage expenses.

Kaizen:

This philosophy of continuous improvement encourages small and gradual changes in processes. Employees across all levels have the opportunity, to spot inefficiencies like steps in the assembly of tractors and suggest solutions, to make workflows smoother.

Six Sigma:

Six Sigma employs data analysis techniques to minimize process variations and enhance quality. By adopting Six Sigma practices Big Green Tractor can review production data to pinpoint inefficiencies, such as hold ups in parts assembly and fine tune processes, to cut down, on costs. Automation and Technology Integration

Automation enhances efficiency by reducing manual labor, human error and improving precision. Big Green Tractor can adopt:

Robot Assembly Lines Using robots for tasks like welding and painting tractor bodies enhances precision and speed. This results in reduced labor costs and quicker production times.

Internet of Things (IoT) IoT powered sensors help monitor equipment performance, in real time. By predicting maintenance requirements these sensors assist in preventing downtime. For instance on assembly machines, they can detect wear and tear and schedule maintenance before any failures occur.

Enterprise Resource Planning (ERP) Systems ERP systems are useful for consolidating data related to inventory, production and the supply chain. They support resource allocation and cost efficiency. For example implementing an ERP system can improve material procurement by reducing overstocking. Energy-Efficient Machinery and Processes

Upgrading to energy-efficient machinery reduces operational costs and environmental impact.

Big Green Tractor can:

- **Invest in Energy-Efficient Equipment:** Replace outdated machinery with highefficiency motors and LED lighting to lower energy consumption. For example, modern CNC machines use less power than legacy equipment.
- **Optimize Production Layout:** Redesign the factory layout to minimize energy waste, such as reducing the distance materials travel between workstations.
- Conduct Energy Audits: Regular audits can identify high-energy-consuming processes, allowing targeted improvements, such as insulating factory buildings to reduce heating costs.

Learning from Other Companies

Companies like John Deere offer insights to Big Green Tractor, on how to optimize their operations. By utilizing lean manufacturing principles such as Just in Time and Kaizen John Deere is able to minimize waste and improve efficiency. Additionally their implementation of IoT and data analytics helps streamline production processes monitor equipment performance and decrease downtime resulting in cost savings. Moreover John Deere enhances precision and reduces labor costs through automation techniques, like robotic assembly. By incorporating strategies Big Green Tractor can boost its manufacturing efficiency reduce operational expenses and enhance product quality ultimately regaining a foothold in the Southeast Asian market.

Minimizing Defects

To achieve defect-free manufacturing, Big Green Tractor can adopt **Total Quality Management** (**TQM**) and **Six Sigma methodologies**, supported by quality control tools.

Total Quality Management (TQM)

TQM emphasizes continuous improvement and customer satisfaction. Key TQM practices include:

- **Staff Training:** Educate employees on spotting and resolving quality problems in production, like misaligned parts.
- **Customer Input Incorporation**: Leverage customer feedback to enhance product design, ensuring tractors align with market demands.
- **Process Harmonization:** Streamline assembly procedures for consistency and error reduction.

Six Sigma Methodology

Six Sigma complements TQM by using statistical tools to reduce defects. Big Green Tractor can implement the DMAIC (Define, Measure, Analyze, Improve, Control) framework to:

- **Define:** Recognize important quality concerns, like issues with tractor engines.
- **Measure:** Gather information on defect rates during the manufacturing process.
- Analyze: Employ tools to pinpoint causes such as defective parts from vendors.
- **Improve:** Execute remedies, such as tighter supplier quality inspections.

• **Control:** Monitor processes to sustain improvements, using control charts to track defect rates.

Quality Control Tools

To ensure production Big Green Tractor can use quality control tools.

Pareto Charts help identify defects allowing attention to critical issues (for example 80% of defects stemming from 20% of processes like welding).

Control Charts are used to monitor the stability of processes, detecting variations in production quality for consistency.

Root cause analysis techniques like the 5 Whys assist in discovering the possible causes of defects - either due to training deficiencies, or equipment deficiencies, allowing improved measures to be taken. Using root cause analysis tools, along with auditing and training the firm can deliver strengths of quality control, helps reduce defects, and improves overall efficiency of production.

21st Century Tools for Greener Processes

Big Green Tractor can leverage **Industry 4.0 technologies** and sustainable practices to create greener manufacturing processes.

Industry 4.0 Technologies

- Internet of Things (IoT): IoT sensors can keep track of energy usage and emissions in time allowing for data based decision making to lessen impact. For instance IoT can enhance fuel consumption in tractor manufacturing.
- Artificial Intelligence (AI): AI technology has the ability to forecast equipment malfunctions and streamline production timelines resulting in decreased energy wastage and enhanced productivity
- **Robotics:** Utilizing robot systems that optimize energy levels has the potential to substitute traditional machinery leading to decreased energy consumption without compromising accuracy.

Renewable Energy Sources

- **Solar Energy:** Use solar panels to provide power to manufactuering facilities and decrease reliance on fossil fuels. For example, solar energy can power the assembly line while the sun is shining.
- Wind Energy: If possible, partner with a local wind farm to procure renewable energy and further reduce your carbon footprint..

Sustainable Materials and Waste Reduction

• **Eco-Friendly Materials:** Use biodegradable lubricants and recyclable metals for tractor components to reduce environmental impact.

- Waste Reduction Techniques: Implement closed-loop systems to recycle scrap metal and other materials. For example, reusing steel scraps from tractor production can reduce raw material costs.
- **Lean Manufacturing:** Lean principles, such as reducing overproduction, minimize waste and promote sustainability.

Part Two: Socially Responsible Operational Guide

Industrial Standards for Chemical Waste Disposal

Following international standards promotes responsible chemical waste management.

ISO 14001

ISO 14001 provides an effective framework for environmental management systems (EMS) to allow for sustainable operations. Big Green Tractor can establish an EMS by providing policies to help monitor and eliminate chemical waste, like used lubricants and paints, affecting the environment. Regular audits of the waste disposal process ensures compliance with ISO 14001 standards, while identifying areas for improvement.

Operating with ISO 14001 certified demonstrates environmental stewardship to clients, which affects brand response and customer loyalty. Certification also meets regulatory standards and lowers the chances of having to pay fines, and elevates Big Green Tractor as a leader in sustainable manufacturing in the Southeast Asian market.

Other Standards:

- The Environmental Protection Agency (EPA): Follow the U.S. Environmental Protection Agency (EPA) standards for hazardous chemicals disposal, such as storing and treating chemical waste properly.
- Local regulations: Follow Indonesian environmental standards, including limits on these hazardous waste materials as well as limits on emissions, becoming compliant will be positive for the company

Green Alternatives to Traditional Manufacturing

Big Green Tractor has the opportunity to embrace alternatives to greatly minimize their impact on the environment while keeping up with worldwide trends. Using products like soy or canolabased oils instead of petroleum based products can reduce the amount of toxicity, and it will also allow for safer disposal. Also, if we increase the use of recyclable materials (metal or plastic...) for the components of tractors, it will reduce waste and allow for recycling at the end of the product's life span. Closed loop systems enable wastes, such as scrap metals derived from

production, to be reintroduced to the manufacturing of tractors which saves the manufacturer costs while reducing the environmental effect of production.

Another crucial approach is adopting a circular economy model. By creating tractors with parts that can be easily disassembled. Big Green Tractor can facilitate the refurbishment or reuse of components after their lifespan ends. This practice does not just extend the life of products but also minimizes waste generation. For instance the design of engines that can be repaired instead of discarded promotes sustainability efforts by using sustainable materials like coatings and bio based composites can also reduce the impact of manufacturing processes.

Additionally Big Green Tractor has the opportunity to take inspiration, from industry frontrunners. For example Caterpillar integrates materials into its machinery and assesses lifecycles to lessen their footprint one approach that Big Green Tractor could adopt when evaluating its production methods. Volvos Construction Equipment similarly prioritizes energy usage and waste minimization resulting in advancements, towards sustainability. By incorporating energy sources like panels to operate plants or collaborating with wind farms Big Green Tractor can decrease dependency on fossil fuels. Furthermore employing production techniques such as manufacturing to curb overproduction aligns with sustainability objectives. These eco friendly alternatives not contribute towards reducing the footprint but also boost cost efficiency enhance brand image and ensure adherence to regulations positioning Big Green Tractor as a frontrunner in eco friendly manufacturing practices, Southeast Asia.

Biodegradable Materials

Big Green Tractor can shift, towards using lubricants instead of petroleum based ones. The Greenhouse Oil, to, oil alternatives like soybean oil are biodegradable break down naturally and help protect ecosystems when disposed of. These lubricants not serve performance purposes but also contribute to goals by reducing the chances of contaminating soil and water. Furthermore incorporating materials such as plastics and metals in tractor components enables recycling at the end of their life cycle, cutting down on waste. For instance using steel or composites in tractor structures not ensures strength but also promotes sustainability. By choosing materials Big Green Tractor has the opportunity to lower its impact on the environment and adhere to regulations. These actions can boost the companys reputation among customers who prioritize being eco friendly. Caterpillar serves as an example of a company successfully implementing recycled materials, providing inspiration for Big Green Tractor to follow suit. This approach enables production while enhancing its market position in Asia.

Recycling and Circular Economy Practices

Big Green Tractor can implement

closed-loop recycling

By implementing strategies, to decrease waste and improve sustainability. By recycling by products. In tractor manufacturing like reusing scrap metal the company can cut down on costs. Environmental footprint. For example melting down steel scraps and repurposing them for new

parts helps reduce resource usage. Furthermore embracing

circular economy practices

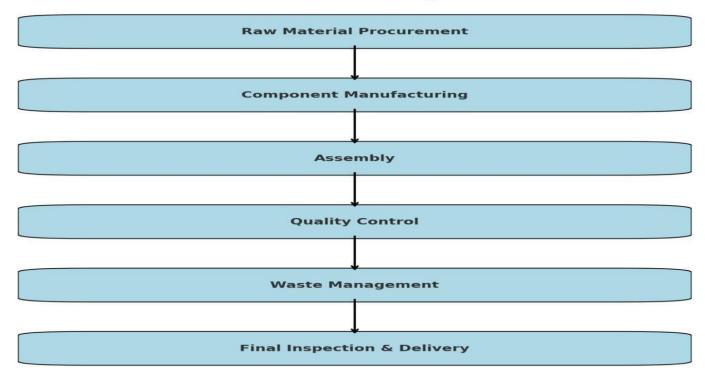
One of the aspects considered in the design process is the creation of tractors that can be easily disassembled. This allows for the reuse of components once the tractors reach the end of their lifecycle. For example modular designs with parts like engines or chassis that can be detached promote refurbishment instead of disposal. This practice not only extends the lifespan of products but also helps in minimizing waste going into landfills. The approach is in line with sustainable trends and resonates with customers who are environmentally conscious. A case study, in point is Volvo Construction Equipment which has developed machinery with recyclability in mind serving as an example for Big Green Tractor. Adopting these methods not, for meeting goals contributes to cost efficiency by cutting down on expenses related to waste disposal and raw material acquisition. Moreover implementing circular economy strategies boosts the brands image and ensures compliance with environmental regulations positioning Big Green Tractor as a leader, in sustainable manufacturing within Southeast Asia enhancing its competitiveness and long term profitability.

Case Studies

- **Pratt & Whitney:** This engine manufacturer aims for zero waste by 2025 through recycling and waste reduction initiatives, offering a model for Big Green Tractor to emulate.
- **Airbus:** Airbus uses life cycle assessments to minimize environmental impact, a practice Big Green Tractor can adopt to evaluate tractor production processes.

Process Map Visualization

A visual representation of Big Green Tractors manufacturing process called a process map provides an overview of their workflow. This tool highlights the steps involved inputs and outputs involved in the operations helping to improve overall efficiency. The map shows the stages in the production process from sourcing raw materials to delivering finished goods, including component manufacture, assembly, quality assurance, and waste management etc. Mapping these stages allows the look through the entire process and recognize areas of inefficiency from lost time in waiting for parts to duplication of effort. For example, the maps will identify the bottlenecks in the assembly line, so they can make the process flow better using automation or streamlined methods. The maps will help quality by identifying the areas of the process, for instance where a defect may introduce from bad welding, with a chance to inspect before they get there. The waste maps outline their resources, like sustainable materials (steel) and outputs, their tractors, and where they can use the most effective use of those resources. This visual tool fosters communication among team members bringing employees together around common operational objectives. Moreover it supports compliance, with standards such as ISO 14001 by incorporating waste management practices like recycling scrap metal. By using process mapping Big Green Tractor can boost efficiency cut costs improve product quality and align with sustainability goals strengthening its competitive edge, in the Southeast Asian market.


Key Benefits of Process Map

- Visual Representation: A process map provides a clear, comprehensive overview of Big Green Tractor's production process, from acquiring materials to assembling the final product. This visual representation helps teams understand align with workflows and goals.
- Identify Bottlenecks: The map allows us to see bottlenecks like delays in parts delivery or equipment breakdowns and take action on specific things, like... addressing slow supply chain processes improving logistics, eliminating delays in production.
- Improve Efficiency: The process map enhances efficiency by simplifying workflows and removing steps like unnecessary handling. This leads to time and cost savings in operations while supporting lean manufacturing practices.
- Quality Control: Focusing on quality control the map indicates points in the process
 where issues like poor welding or misplacement of components could arise. This enables
 timely quality checks such as conducting inspections before assembly to ensure products
 meet standards.
- Support Sustainability: In promoting sustainability incorporating waste management practices like recycling metal aligns with environmental regulations, such as ISO 14001. This not boosts sustainability efforts minimizes waste but also enhances the reputation of Big Green Tractor, in Southeast Asia's market.

Example Process Map for Tractor Manufacturing

- 1. Raw Material Procurement: Source materials like recyclable steel and bio based composites to reduce impact. Collaborate with certified suppliers to ensure adherence to standards cut down, on carbon emissions and support production.
- 2. Component Manufacturing: Utilize machines such as CNC systems to create tractor parts with waste. Apply manufacturing principles to make the most of materials ensuring accuracy and minimizing scrap during production.
- 3. Assembly: Use robotic assembly lines to improve precision and productivity in building tractor bodies. Automation helps lower labor costs and production time while upholding quality across all units.
- 4. Quality Control: Practice Total Quality Management (TQM) and Six Sigma protocols at every step employing tools, like Pareto charts and control charts to detect and rectify defects, such as faulty welds or misaligned parts guaranteeing outputs.
- 5. Waste Management: Recycle materials, like steel scraps, through systems and handle chemical waste, like lubricants according to ISO 14001 guidelines. To reduce impact and adhere to regulations.
- 6. Final Inspection and Delivery: Perform thorough inspections to ensure tractors without defects align with customer requirements. Streamline delivery processes to distribute sustainable tractors, to clients boosting satisfaction and enhancing market reputation.

Conclusion:

The Big Green Tractor Company finds itself at a moment dealing with stagnant growth and increasing worries. To overcome these problems and build a future the company will need to start by developing a strategy with a priority on reducing waste through responsible, careful operations. Today this broad approach can eliminate waste and directly reduce costs while recognizing our obligations to the world's pressing eco-friendly manufacturing needs. The guide for streamlining operations emphasizes implementing practices automation and processes to lower costs and eliminate defects. By incorporating technologies like the Internet of Things (IoT) advanced analytics and smart automation Big Green Tractor can enhance production processes improve precision and reduce waste. Transitioning towards energy sources like wind or solar power and using sustainable materials will establish the company as a frontrunner, in eco friendly manufacturing for the century. Mapping out processes will further enhance efficiency by pinpointing bottlenecks and ensuring strict quality standards leading to the consistent delivery of products. Beyond operational improvements, the social responsibility guide also supports distributors in complying with internationally recognized standards including ISO 14001. In many cases, by using alternatives such as biodegradable materials and processes you may know the right things and you may also care about the minimal footprint in a viable consumer market. You are building trust and loyalty with the stakeholders and this may strengthen a brand image and reputation and reduce risk. You expect to see good results from your strategies. Lowering costs through operations improving product quality with advanced technologies and promoting sustainability via practices. Collectively these initiatives aim to strengthen Big Green Tractors market position enabling effective competition in an industry while maintaining operational excellence and environmental care to achieve solid financial outcomes. While positively impacting society over the term these actions ensure growth and relevance within a competitive global landscape.

References

- 1. Evans, J. R., & Lindsay, W. M. (2017). *Managing for Quality and Performance Excellence*. Cengage Learning.
- 2. Womack, J. P., & Jones, D. T. (2003). *Lean Thinking: Banish Waste and Create Wealth in Your Corporation*. Simon & Schuster.
- 3. Montgomery, D. C. (2019). Introduction to Statistical Quality Control. Wiley.
- 4. Sarkis, J. (2020). Sustainable Manufacturing: Concepts, Tools, and Case Studies. Springer.
- 5. International Organization for Standardization. (2015). *ISO 14001:2015 Environmental Management Systems*. ISO.
- 6. U.S. Environmental Protection Agency. (2025). *Manufacturer Information on Greener Products*. www.epa.gov[](https://www.epa.gov/greenerproducts/manufacturer-information-greener-products)
- 7. Qilu Machinery. (2023). *Environmental Impact of Farm Tractors: Are Greener Alternatives Emerging?*. qilumachinery.com
- 8. IBM. (2024). What Is Green Manufacturing?. www.ibm.com[](https://www.ibm.com/think/topics/green-manufacturing)
- 9. BCG. (2020). *The Green Factory of the Future*. www.bcg.com[](https://www.bcg.com/publications/2020/green-factory-of-future)

- 10. World Economic Forum. (2019). *Here's Why Green Manufacturing Is Crucial for a Low-Carbon Future*. www.weforum.org[](https://www.weforum.org/stories/2019/01/here-s-why-green-manufacturing-is-crucial-for-a-low-carbon-future/)
- 11. Genius ERP. (2024). What is Green Manufacturing? (Plus 5 Steps to a Greener Future). www.geniuserp.com/[](https://www.geniuserp.com/resources/blog/what-is-green-manufacturing/)
- 12. Evocon. (2022). 10 Examples of Green Manufacturing Processes. evocon.com
- 13. Aviation Benefits. (n.d.). Greener Manufacturing. aviationbenefits.org

300080X)

- 14. Springer. (2021). *Greentelligence: Smart Manufacturing for a Greener Future*. cjme.springeropen.com
- 15. ScienceDirect. (2023). *Intelligent Manufacturing, Green Technological Innovation and Environmental Pollution*.

 www.sciencedirect.com[](https://www.sciencedirect.com/science/article/pii/S2444569X2

13 | Page